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Introduction 

The fast FOURIER transform (FFT) has become well known as a very efficient 
algorithm for calculating the discrete FOURIER transform (DFT) -a  formula for 
evaluating the N FOURIER coefficients from a sequence of N numbers. The DFT 
is used in many disciplines to obtain the spectrum or frequency content of a signal 
and to facilitate the computation of discrete convolution and correlation. Indeed, 
the publication of the FFT algorithm as a means of calculating the DFT by J. W. 
COOLEY • J. W. TUKEY in 1965 [1] was a turning point in digital signal processing 
and in certain areas of numerical analysis. They showed that the DFT, which was 
previously thought to require N 2 arithmetic operations, could be calculated by 
the new FFT algorithm using a number of operations proportional to N log N. 
This algorithm had a revolutionary effect on the way much of digital processing 
was done and the FFT remains the most widely used method of computing FOU- 
RIER transforms [2]. 

In their original paper COOLEY &TuKEY referred only to the work of I. J. GOOD 
[3] published in 1958 as influencing their development. However, it was soon 
discovered there are major differences between the COOLEY-TUKEY FFT and the 
algorithm described by GooD, which is now commonly referred to as the prime 
factor algorithm (PFA). Soon after the appearance of the COOLEY-TUKEY paper, 
RUDNICK [4] demonstrated a similar algorithm based on the work of DANIELSON 
& LANCZOS [5] which had appeared in 1942. This discovery prompted an investi- 
gation into the history of the FFT algorithm by COOLEY, LEWIS, & WELCH [6]. 
They discovered that the DANIELSON-LANCZOS paper referred to the works of 
RUNGE published at the turn of the century [7, 8]. While not influencing their work 
directly, the algorithm developed by COOLEY & TUKEY clearly had roots in the early 
twentieth century. 

In a recently published history of numerical analysis [9], H. H. GOLDSTINE 
attributes to CARL FRIEDRICH GAUSS, the eminent German mathematician, an 
algorithm similar to the FFT for the computation of the coefficients of a finite 
FOURIER series. GAUSS' treatise describing the algorithm was not published in his 
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lifetime; it appeared only in his collected works [10] as an unpublished manuscript. 
The presumed year of  the composition of  this treatise is 1805, thereby suggesting 
that efficient algorithms for evaluating coefficients of  FOURIER series were devel- 
oped at least a century earlier than had been previously known. I f  this year is 
accurate, it predates FOURIER'S first presentation on harmonic analysis in 1807. 
A second reference to GAUSS' algorithm is found in an article in the Encyklopiidie 
der Mathematischen Wissenschaften [11] which was written by H. BURKHARDT 
in 1904. BURKHARDT comments that GAUSS' method was general, but seemingly 
not known by practitioners. It is interesting to note that GOLDSTINE'S and 
BURKHARDT'S works went almost as unnoticed as GAUSS' work itself. 

Because of  the importance of  the FFT, its history is again open to question. 
Is GAUSS' method indeed equivalent to a modern FFT algorithm ? If  so, which type 
and why is this work by one of  the greatest mathematicians not known by engineers 

• and physicists even after the publication of  GOLDSTINE'S book ? What influenced 
GAUSS' work and who developed the DFT ? How firmly established is the date of  
writing? To answer these questions and to trace the history of  FOURIER series 
coefficient calculation into the eighteenth and nineteenth centuries, we undertook 
our own historical investigation,1 dealing primarily with the original texts and con- 
centrating on GAUSS' work. What follows is a summary of  our work, with historical 
references and evidence provided for the reader to pursue the history as he or she 
wishes. Another class of  efficient DFT algorithms, called prime factor algorithms, 
which include work from THOMAS [13], GOOD [3], WINOGRAD [14], and others is 
not included in this investigation. 

The Twentieth Century 

COOLEY, LEWIS, & WELCH [6] discovered that the DANIELSON-LANCZOS paper 
referred to the work of  CARL DAVID TOLMr~ RUNGE (1856-1927) [7, 8] as the 
inspiration for their algorithm. In these two papers and the book by RUNGE & 
K/3NIG [15], a doubling algorithm is decribed which computes the FOURIER trans- 
form of  two N-point subsequences to obtain a 2N-point FOURIER transform 
using approximately N auxiliary operations. This algorithm is not as general as 
the COOLEY-TUKEY FFT algorithm because it only allows doubling of  the original 
sequence length whereas the COOLEY-TUKEY approach efficiently computes the 
DFT for any multiple of  the original length. The work of  RUNGE also influenced 
STUMPFE who, in his book on harmonic analysis and periodograms [16], gives a 
doubling and tripling algorithm for the evaluation of  harmonic series. Further- 
more, on page 142 of  that book, he suggests a generalization to an arbitrary mul- 
tiple. All of  this historical information was exposed by COOLEY, LEWIS, & WELCH 
[6] in much greater detail and has been repeated here to provide a background on 
the knowledge of  the history of  the FFT circa 1967. 

1 This has resulted in a bibliography of over 2000 entries [12]. 
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The Nineteenth and Early Twentieth Centuries 

The work of RUNGE was well-known in the early part of  the Twentieth Century 
and is even referred to in the popular textbook written by WHITTAKER & ROBIN- 
SON [17], which was originally published in 1924. WHITTAKER & ROBINSON state 
that RUNGE'S method has been widely published and cite a paper by SILVANUS 
PHILLIPS THOMPSON (1851--1916) [18]. THOMPSON, who was also a biographer of  
Sir WILLIAM THOMSON, Lord KELVIN (1824-1907), was apparently trying to pop- 
ularize RUNGE'S method in Great Britain through his articles [18, 19]. THOMPSON'S 
second paper [18] does not actually use an FFT method to obtain computational 
savings, but is interesting because of  the discussion included at the end of  the paper. 
The discussion includes comments by GEORGE HOWARD DARWIN (1845--1912), 
son of  the more famous CHARLES, who claims to have used efficient techniques for 
the harmonic analysis of  tides in 1883 [20], which he attributes to ARCHIBALD 
SMITH (1813--1872) in 1874 [21] and Sir RICHARD STRACHEV (1917-1908)in 1884 
[22]. In DARWIN'S paper [20], reference is made to a paper by JOSEPH DAVID 
EVERETT (1831--1904) published in 1860 [23], and credit is also given to ARCHI- 
BALD SMITH. EVERETT was working with Lord KELVIN on harmonic analysis of  
daily temperature variations and gives a method for harmonic analysis using 12 
samples which he claims is an extension of  the method used by Lord KELVIN in 
[24]. Lord KELVIN used a method based on 32 samples which was due to 
ARCHIBALD SMITH and was originally published in 1846 [25] and presented in more 
detail in 1850 [26] and 1855 [27]. Apparently S. P. THOMPSON, Lord KELVIN'S 
biographer, was unaware of  the use of efficient techniques of  harmonic analysis 
in this paper. 

The British discovery of  efficient techniques for harmonic analysis can be 
reliably traced to ARCHIBALD SMITH in 1846. Other algorithms had been developed 
independently by various researchers in the Nineteenth Century. These techniques 
are tabulated on pp. 686-687 of the  article by BURKHARDT [l 1]. The earliest method 
referenced by BURKHARDT is that of  FRANCESCO CARLINI (1783-1862) in 1828 
[28] for n = 12. The only other method found by BURKHARDT which predates 
ARCHIBALD SMITH is that of  PETER ANDREAS HANSEN (1795--1874) in 1835 [29] 
for n = 64. These works have no apparent influence on the work by the British. 
HANSEN was heavily influenced by GAUSS in his astronomical work, but does not 
mention GAUSS in the development of  his algorithms for harmonic analysis for 
reasons which shall be made clear later. 

An important detail that should not be overlooked is that most of the methods 
preceding RUNGE were not intended for computing harmonics above the fourth. 
For  most applications of  harmonic analysis in the Nineteenth Century this was 
adequate because the measurement quantization was generally on the same order 
of  magnitude as the contributions of  the higher-order harmonics. These methods 
are, therefore, similar in style to what are now called 'pruned' FFT's  [30]. Most of 
these methods were described by computational tables for a fixed number of  sam- 
ples and were not presented as general techniques for computing harmonics for an 
arbitrary number of  samples. These algorithms consisted of grouping terms in 
the trigonometric series having the same multiplicative coefficient. Thus, a group 
of  n multiplies and n - 1 additions was reduced to a single multiply and n - 1 
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additions. However, such an approach will not  result in what is termed today an 
efficient algorithm, such as FFT.  Efficient algorithms are derived by decomposing 
a DFT  into a sequence of shorter length DFTs. As will be seen, this procedure was 
that used by GAUSS; consequently, the nineteenth century work was unrelated to 
GAUSS' and did not foreshadow the twentieth century work on efficient DFT  
algorithms. 

The Background of Gauss' Work 

The use of  trigonometric series in analysis originates in the work of LEONHARD 
EULER (1707--1783) [31-35]. In [35], EULER gives the formulas for the coefficients 
of  the FOURIER series representation of  a function of  a real variable. In another 
work [34], EULER uses a trigonometric series to describe the motions of  a discrete 
approximation to sound propagation in an elastic medium. By example, he derives 
a formula for the coefficients of  a series of  sines given samples of  the function, which 
can be interpreted as the DFT for a series consisting only of  sines [36]. The stature 
of EULER in his own time caused his works to be read by his contemporaries, 
particularly the French mathematicians CLAIRAUT, D'ALEMBERT, and LAGRANGE. 
ALEXIS-CLAUDE CLAIRAUT (1713-1765) published in 1754 [37] what we currently 
believe to be the earliest explicit formula for the DFT (the computation for series 
coefficients from equally spaced samples of  the function), but it was restricted to 
a cosine FOURIER series. DANIEL BERNOULLI (1700-1782) expressed the form of a 
vibrating string as a series of  sine and cosine terms with arguments of  both time 
and distance in 1753 [38]. Perhaps the most influential work in the latter portion 
of the nineteenth century on the DFT is that of  JOSEPH Louis LAGRANGE (1736- 
1813). Extending the work of  EULER, he published a DFT-like formula for finite 
FOURIER series containing only sines, in 1759 [39] and in 1762 [40]. This work was 
referred to, for example, by CARLINI in his paper of  1828. The most authoritative 
compilation of  the early history of  trigonometric series is an article of  536 pages 
by H. BURKHARDT [41]. 

CLAIRAUT and LAGRANGE were concerned with orbital mechanics and the prob- 
lem of  determining from a finite set of  observations the details of  an orbit. Conse- 
quently, their data was periodic and they used an interpolation approach to orbit 
determination: in modern terminology and notation, an even periodic functionf(x) 
having a normalized period of one is represented as a finite trigonometric series by 

N--1 
f(x) = ~ a~ cos 2~kx, 0 ~ x ~ 1. (1) 

k~0 

The problem is to find the coefficients {ak} from the N values o f f (x )  for values of 
n 

x n = ~ -  with n = 0, 1 . . . . .  N - 1. By forcing f(x) to equal the observed values 

at the abscissas (x,}, one can easily show that the coefficients {ag} are given by 
the cosine DFT of  the observed values of f (x) .  GAUSS presumably knew of the 
papers of LAaRANGE [39, 40], for while a student, from 1795 to 1798, 2 he borrowed 
from the library at G6ttingen the volumes containing them. 

2 DUNNINOTON by searching the University library records [42] has compiled a list 
of books borrowed by GAUSS at G6ttingen. 
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Gauss' Algorithm for Computing the DFT 

The treatise of  interest was written by CARL FRIEDRICH GAUSS (1777-1855) 
and entitled "Theoria Interpolationis Methodo Nova Tractata".  It was published 
only posthumously in Volume 3 of  his collected works in 1866 [10], but was orig- 
inally written, most likely, in 1805. GOLOSTINE [9] gives, on pages 249-253, an 
English translation of  parts of  the sections of  GAuss' paper related to trigonometric 
interpolation algorithms, which are Articles 25 through 28 of  the original Latin 
text. In this treatise, GAUSS extended the work on trigonometric interpolation to 
periodic functions which are not necessarily odd or even while considering the 
problem of  determining the orbit of  certain asteroids from sample locations. These 
functions are expressed by a FOURIER series of the form 

f(x) = ~ a~ cos 2~kx + ~ b~ sin 2:~kx, (2) 
k = 0  k = l  

where m = ( N -  1)/2 for N o d d ,  or m = N/2 for Neven .  GAUSS showed in 
/,/ 

Articles 19-20 that if one were given the values of  f(xn), xn = -~ (n = O, 1 . . . . .  

. . . .  N - 1), that the coefficients a/~ and bk are given by the now well-known for- 
mulas for the DFT  [43]. This set of equations is the earliest explicit formula for 
the general DFT  that we have found. 

GAUSS develops his efficient algorithm by using N1 equally spaced samples over 
one period of  the signal. This set of  NI samples is a subset of  N total samples, 
where N = N~N2. GAUSS computes the finite FOURIER series which passes 
through these samples using m harmonics where m is as defined in (2). He then 
assumes that another subset of  N1 equally spaced samples of  the signal are mea- 
sured which are offset from the original set of  samples by a fraction, 1/?(2, of  the 
original sample interval where N2 is a positive integer. A finite FOURIER series 
with m harmonics is computed which passes through this new set of  samples and 
it is discovered that these coefficients are quite different from those computed for 
the original N1 samples. GAUSS realized what the problem was and proceeded to 
develop a method for correcting the coefficients he had already calculated and to 
determine additional coefficients for the higher frequency harmonics. Using mo- 
dern terminology, we would say that the waveform was undersampled; therefore 
the coefficients were in error because of  aliasing of  the high frequency harmonics [2]. 

GAuss' solution to this problem is to measure a total of  N2 sets of  N1 equally 
spaced samples which together form the overall set of  N equally spaced samples. 
The finite FOURIER series for the entire set of  N samples is computed by first 
computing the coefficients for each of  the N2 sets of  length N~ all shifted relative 
to a common origin, and then computing coefficients of  the N1 series of  length N2 
which are formed from the coefficients of corresponding terms in the N2 sets of 
coefficients originally computed. A final trigonometric identity is used to convert 
these coefficients into the finite FOURIER series coefficients for the N samples. 

In modern terminology, the DFT of  the samples o f f ( x )  is defined by 
N - - 1  

= X ( n )  (3) 
n = 0  
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where, if  f (x)  has a period of  one, X(n) = f (n/N)  are the N equally spaced sam- 
ples, WN = e -j2~/N and k = 0, 1 . . . . .  N - 1 are the indices of  the FOURIER coef- 
ficients. This D F T  can be rewritten in terms of  N2 sets of  N1 subsamples by the 
change of  index variables [44]: 

n = N2nl + n2, 

k = kx + Nlk2 ,  

for n~, kl  = 0, 1 . . . . .  N~ - 1 and /'/2, k2 ~ 0, 1 . . . . .  N2 - 1. Each subsequence 
is a function of  nl and which subsequence it is, is denoted by I/2. The D F T  in 
(3) becomes 

N2--1 ['NI--1 wnlkl wnzkl ] 1/17n2k2 
n2=0 oX(N2nx n2) N, U ] (4) 

where the inner sum calculates the N2 length-N1 DFTs  corrected by a power of  
WN, and the outer sum calculates the N1 length-N2 DFTs.  This is exactly the ex- 
ponential form of  GAUSS' algorithm where the WN term accounts for the shifts 
from the origin of  the N2 length-N1 sequences. This is also exactly the FFT  al- 
gorithm derived by COOLEY & TUKEY in 1965 [1] where WN is called a twiddle 
factor [2], a factor to correct the D F T  of  the inner sum for the shifted samples of  
X(n). The equivalence of  GAUSS' algorithm and the COOLEY-TUKEY F F T  is not 
obvious due to the notation and trigonometric fornmlation of  GAUSS. One can 
easily verify the results by calculating the inner sum of  (4) and comparing the nu- 
merical results with the intermediate calculation in Article 28 of  [10] after converting 
from exponential to trigonometric form and correcting for factors of  1/Na. The 
example of  N -- 12 for the orbit of  the asteroid Pallas was worked out in Article 28 
of  [10] for N1 = 4, N2 -- 3 and for N1 = 3, N2 = 4 and an example was given 
in Article 41 for N =  36 with N~ = N 2  = 6 and for the special case of  odd 
symmetry. 

In Article 27 GAUSS states that his algorithm can be generalized to the case 
where N has more than two factors, although no examples are given. This and the 
observed efficiency are seen in the following translation from Article 27. 

"And so for this case, where most of  the proposed values o f  the function X, 
an integral period of  the arrangement, the number is composite and = ~ = #v, 
in articles 25, 26, we learned that through the division of  that period into v 
periods o f #  terms, it produces, when all values are given, the same satisfactory 
function, which by the immediate application of  the general theory applies 
to the whole period; truly, that method greatly reduces the tediousness of  
mechanical calculations, success will teach the one who tries it. Now the work 
will be no greater than the explanation of  how that  division can be extended still 
further and can be applied to the case where the majority of  all proposed values 
are composed of  three or more factors, for example, if  the number # would 
again be composite, in that case clearly each period of  be terms can be sub- 
divided into many lesser periods." 
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He did not, however, go on to quantify the computational requirements of  his 
method to obtain the now familiar NZ '  Ni or N log N expressions for its compu- 
tational complexity. From this short excerpt, GAUSS clearly developed his proced- 
ure because it was computationally efficient and because it could be applied 
to a select, but interesting, set of  sequence lengths. Thus, GAUSS' algorithm is as 
general and powerful as the COOLEY-TUKEY algorithm and is, in fact, equivalent 
to an algorithm called decimation-in-frequency adapted to a real data sequence. 

The treatise by GAuss was not published during his lifetime and was not  ex- 
plicitly dated. The hints used by the biographers of  GAuss [42, 45] and by us to 
establish a date for this work are summarized in the accompanying table. From 
these facts, we infer that GAuss wrote this treatise in October-November,  1805. 
This work predates the work of  JEAN BAPTISTE JOSEPH FOURIER (1768-1830) in 
1807 on representations of  functions as infinite series of harmonics. FOURIER 
did not publish his results until 1822 [46] because his presentation to the Academy 
of  Sciences in Paris on December 21, 1807 was not  welt received by LAGRANGE 
and was refused publication in the Memoirs of  the Academy. An earlier manu- 
script of  FOURIER'S dates back to 1804-1805 and includes research which he 
may have started as early as 1802 [47]. 

Discussion 

The DFT approach to solving the problem of  orbital mechanics was one of  
several. Approaches related to Newtonian mechanics gave alternative solutions 
to the problem, and, in the end, came to be preferred, even by GAuss. Mathemati- 
cians concerned with orbital mechanics who would have read his posthumous 
treatise at the time of  its publication in 1866 probably would not have found the 
technique described therein of  much interest. For  the modern technical reader, 
the treatise is difficult to read because of  the language and the notation adopted 
by GAUSS to describe his method. Examples of  this notation are the use of  ~r as 
the length of  a sequence (instead of  N), the use of the symbols a, b, e, d, .... a', b', 
c', d', . . . ,  a", b", e", d",  etc. as the indices of  the time series, and the use of  capi- 
tal letters to refer to the values of  a function at a point whose index is the corres- 
ponding small letter (e.g., f (a)  = A). GAUSS' method was also derived using real 
trigonometric functions rather than complex exponentials, making it more 
difficult to relate his method to current FFT  techniques. Thus, the dated nature 
of  the publication, its publication in Latin, and the lack of  notice of  GOLDSTINE'S 
and BURKHARDT'S work contributed to the "loss" of  GAUSS' FFT  technique until 
n o w .  

The D F T  appears to have been originated by GAUSS, although that work can 
be considered a simple extension of eighteenth century work. However, GAUSS' 
derivation of  the general DFT  formula in 1805 implies that the genesis of  modern 
efficient DFT  algorithms presumably could not have occurred prior to that date. 
Although it appears that the discrete FOURIER transform should have really been 
named after GAUSS, it is obviously not practical to rename it. The term "GAuss- 
FOURIER transform (GFT)"  has already been coined by HOPE [48] in 1965 and the 
term "discrete GAuss transform (DGT)"  has also been previously used [49]. 
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T. S. HUANG was unknowingly correct when he satirically remarked in 1971 that  
the FFT  was GAUSS' 1001 st algorithm [50]. 

This investigation has once again demonstrated the virtuosity of  CARL FRIEDR:CH 
GAUSS. In addition, it has shown how certain problems can be timeless, but that  
their solution can be rediscovered again and again. BURrd-IARt)T pointed out this 
algorithm in 1904 and GOLDSTINE suggested the connection between GAUSS and 
the FFT  in 1977, but both of  these went largely unnoticed, presumably because 
they were published in books dealing primarily with history. I t  was shown that  
various attempts at efficient algorithms were used in Great  Britain and elsewhere 
in the 19 t~ Century, but  were unrelated to the work o f  GAUSS and were, in fact, not  
as general or well-formulated as GAuss' work. Almost  one hundred years passed 
between the publication of  GAUSS' algorithm and the modern rediscovery o f  this 
approach by COOLEY & TUKEY. 

Principal Discoveries of Efficient Methods 
of Computing the DFT 

Researcher(s) Date Lengths of Number of Application 
Sequence DFT Values 

C. F. GAUSS [10] 1805 Any composite All Interpolation of 
integer orbits of celestial 

F. CARL1NI [28] 1828 12 7 

A. SMITH [25] 1846 4, 8, 16, 32 5 or 9 

J. D. EVERETT [23] 1860 12 5 

C. RUNGE [7] 1903 2nK All 

K. STUMPFF [16] 1939 2nK, 3~K All 

DANtELSON & LANCZOS [5] 1942 2 n All 

L. H. THOMAS [13] 1948 Any integer with All 
relatively prime 
factors 

I. J. GOOD [3] 1958 Any integer with All 
relatively prime 
factors 

COOLEY (~ TUKEY [i] 1965 Any composite All 
integer 

S. WINOGRAD [14] 1976 Any integer with All 
relatively prime 
factors 

bodies 
Harmonic analysis 
of barometric pres- 
sure variations 
Correcting devia- 
tions in compasses 
on ships 
Modeling under- 
ground temperature 
deviations 
Harmonic analysis 
of functions 
Harmonic analysis 
of functions 
X-ray diffraction in 
crystals 
Harmonic analysis 
of functions 

Harmonic analysis 
of functions 

Harmonic analysis 
of functions 
Use of complexity 
theory for harmonic 
analysis 
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April 30, 1777 

September 1795 

November 25, 1796 

December 1796 

September 28, 1798 

December, 1804- 
1805 

Dating of Gauss' Work on the FFT 
Theoria interpolationis methodo nova tractata 

Volume HI, Werke 

GAUSS is born in Brunswick. 

GAUSS arrives at G6ttingen. Throughout  his stay there, he 
checked out many books from the university library. In 
particular, he continually read Miscellanea Taurinensia, 
the proceedings of  the academy located in Turin. When these 
proceedings were being published, LAGRANGE was there and 
this journal served as his exclusive outlet. In Volumes I 
and III, LAGRANGZ'S DF T  (sine only) appears. 

Date given for diary entry 44, 3 which reads Formula inter- 
polationis elegans. Translated, this entry means "Elegant 
formula for interpolation". The editor of  the diary connected 
this with the LAGRANGE interpolation formula. No specific 
library books can be readily connected to this entry. 

Date given for diary entry 46, which reads Formulae tri- 
gonometricae per series expressae. Translated, this entry 
means "Trigonometric formulas expressed with series". 
The editor of  the diary made no comment about this entry. 

GAUSS returns home to Brunswick after finishing his studies 
at G6ttingen. 

Correspondence between GAUSS and BESSEL indicates their 
concern with the interpolation problem. No mention is 
made, however, of the trigonometric interpolation problem. 4 

3 The entries of GAUSS' mathematical diary are published with accompanying com- 
ments by the editors in Volume X.I of the Werke, pp. 488-571. 

4 Briefwechsel zwischen Gauss und Bessel, Leipzig, 1880. 
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March 25, 1805 

November,  1805 

January, 1806 

July 30, 1806 

November  8, 1808 

June 8, 1816 

M. T. HEIDEMAN, D. H. JOHNSON • C. S. BURRUS 

GAUSS, in a ]etter to the astronomer OLBERS, s provides his 
latest elements for the orbit of the asteroid Juno, among 
which is the value of the eccentricity 0.254236. 6 This number 
is used by GAUSS in an example in his FFT writings. Thus 
the treatise must have been completed after this date. These 
elements were published later in Monatliche Correspondenz, 
a collection of  unreviewed notes containing astronomical 
observations and information, in May, 1805. 

Diary entry 124, which reads Theoriam interpolationis ul- 
terius exeoluimus. Translated, this entry means "We have 
worked out further a theory of interpolation". The editor 
takes this entry to mean that his treatise on interpolation 
could not have been written before November,  1805. He 
refers to a notebook of GAUSS consisting of  short mathemati-  
cal notes (Mathematische Brouillons), which was begun in 
October, 1805. Volume 18 of  the notebook contains an open- 
ing note on interpolation. The editor takes this note to be 
a first draft of  the treatise. However, the collected work of  
GAUSS does not contain this paper. 

In correspondence to OLBERS 7, GAuss mentions his work on 
interpolation, which he says was done "earlier".  He stressed 
the novelty of  the second half  of  the work. He enclosed a 
copy of  it with the letter, asking OLBERS for criticism. In 
reply, OLBERS encouraged publication, but admitted not 
being able to follow the second half. 

Date attached to a letter sent from GAUSS to BODE, in which 
the value of  the eccentricity for Juno of 0.2549441 is given. 
Presumably, this means that the F F T  treatise must have 
been written prior to this date. This letter appeared in 
Monatliche Correspondenz later in 1806. 8 

A letter from SCHUMACHER, a former student of  GAUSS, to 
GAUSS mentions that SCHUMACHER'S mother has a handwrit- 
ten copy of  his work on interpolation. 9 I t  is unclear whether 
this letter is referring to Mathematische Brouillons or the 
Theoria interpolationis. 

SCHUMACnER writes GAUSS that he has a handwritten version 
of GAUSS' work on interpolation, which he hopes GAUSS 
will publish s o o n .  9 Thus, GAUSS did not keep this work 
secret, but presumably was not interested in publishing it. 

5 Briefweehsel zwisehen Olbers und Gauss, Vol. 1, Julius Springer, p. 255. 
6 Volume VI, Werke, p. 262. 
7 Briefweehsel zwisehen Olbers und Gauss, Vol. 1, Julius Springer, pp. 281, 286. 
s Volume VI, Werke, p. 279. 
9 Volume X.2, Werke, p. 125. 
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